Что представляет собой раствор. Растворы

Что представляют собой твердые растворы замещения и внедрения? Приведите примеры.
Твердыми растворами называют фазы, в которых один из компонентов сплава сохраняет свою кристаллическую решетку, а атомы других (или другого) компонентов располагаются в решетке первого компонента (растворителя), изменяя ее размеры (периоды).
Таким образом, твердый раствор, состоящий из двух или нескольких компонентов, имеет один тип решетки и представляет собой одну фазу.
Существуют твердые растворы внедрения и твердые растворы замещения.
При образовании твердых растворов внедрения атомы растворенного компонента B раз­мещаются между атомами растворителя A в его кри­сталлической решетке. При образовании твердых рас­творов замещения атомы растворенного компонента B замещают часть атомов растворителя (компонент A) в его кристаллической решетке.

Поскольку размеры растворенных атомов отличают­ся от размеров атомов растворителя, то образование твердого раствора сопровождается искажением кристал­лической решетки растворителя.

а – атом растворенного компонента больше атома растворителя
б – атом растворенного компонента меньше атома растворителя
Твердые растворы замещения могут быть с ограни­ченной и неограниченной растворимостью. В твердых растворах с ограниченной растворимостью концентрация растворенного компонента возможна до определенных пределов.
В твердых растворах с неограниченной растворимо­стью возможна любая концентрация растворенного ком­понента (от 0 до 100%). Твердые растворы с неограни­ченной растворимостью образуются при соблюдении следующих условий: 1) у компонентов должны быть од­нотипные кристаллические решетки; 2) различие в атом­ных радиусах компонентов не должно превышать для сплавов на основе железа 9%, а для сплавов на основе меди 15%; 3) компоненты должны обладать близостью физико-химических свойств. Однако соблюдение этих свойств не всегда приводит к образованию твердых растворов замещения с неограниченной растворимостью. На практике, как правило, образуются твердые растворы с ограниченной растворимостью.
Твердые растворы внедрения могут быть только с ограниченной концентрации, поскольку число пор в решетке ограничено, а атомы основного компонента сохраняются в узлах решетки.
Твердые растворы замещения с неограни­ченной растворимостью на основе компонентов: Ag и Au, Ni и Cu, Mo и W, V и Ti, и т.д.
Твердые растворы замещения с ограни­ченной растворимостью на основе компонентов: Al и Cu, Cu и Zn, и т.д.
Твердые растворы внедрения: при растворении в металлах неметаллических элементов, как углерод, бор, азот и кислород. Например: Fe и С.

Как и почему при холодной пластической деформации изменяются свойства металлов?
Холодной деформацией называют такую, которую проводят при температуре ниже температуры рекристаллизации. Поэтому холодная деформация сопровождается упрочнением (наклепом) металла.
Форма заготовки при обработке давлением изменяется под действием внешних сил вследствие пластической деформации каждого кристаллита в соответствии со схемой главных деформаций. Основное изменение формы кристаллитов состоит в том, что они вытягиваются в направлении главной деформации растяжения (например, в направлении прокатки или волочения). С повышением степени холодной деформации зерна все более вытягиваются и структура становится волокнистой.
Упрочнение металла в процессе пластической деформации (наклеп) объясняется увеличением числа дефектов кристаллического строения (дислокаций, вакансий, межузельных атомов). Повышение плотности дефектов кристаллического строения затрудняет движение отдельных новых дислокаций, а следовательно, повышает сопротивление деформации и уменьшает пластичность. Наибольшее значение имеет увеличение плотности дислокаций, так как возникающее при этом между ними взаимодействие тормозит дальнейшее их перемещение.
С увеличением степени холодной деформации показатели сопротивления деформированию (временное сопротивление, предел текучести и твердости) возрастают, а показатели пластичности (относительное удлинение и сужение) падают.

Вычертите диаграмму состояния железо-карбид железа, укажите структурные составляющие во всех областях диаграммы, опишите превращения и постройте кривую охлаждения (с применением правила фаз) для сплава, содержащего 0,8% С. Какова структура этого сплава при комнатной температуре и как такой сплав называется?
Первичная кристаллизация сплавов системы железо-углерод начинается по достижении температур, соответствующих линии ABCD (линии ликвидус), и заканчивается при температурах, образующих линию AHJECF (линию солидус).
При кристаллизации сплавов по линии АВ из жидко­го раствора выделяются кристаллы твердого раствора углерода в α-железе (δ-раствор). Процесс кристаллиза­ции сплавов с содержанием углерода до 0,1 % заканчи­вается по линии АН с образованием α (δ)-твердого раст­вора. На линии HJB протекает перитектическое превращение, в результате которого образуется твердый раствор углерода в γ-железе, т. е. аустенит. Процесс первичной кристаллизации сталей заканчивается по линии AHJE.
При температурах, соответствующих линии ВС, из жидкого раствора кристаллизуется аустенит. В сплавах, содержащих от 4,3% до 6,67% углерода, при темпера­турах, соответствующих линии CD, начинают выделяться кристаллы цементита первичного. Цементит, кристал­лизующийся из жидкой фазы, называется первичным. B точке С при температуре 1147°С и концентрации углерода в жидком растворе 4,3% образуется эвтектика, которая называется ледебуритом. Эвтектическое превращение с образованием ледебурита можно записать формулой ЖР4,3->Л[А2,14+Ц6,67]. Процесс первичной кристаллизации чугунов заканчивается по линии ECF образованием ледебурита.
Таким образом, структура чугунов ниже 1147°С будет: доэвтектических – аустенит + ледебурит, эвтектических – ледебурит и заэвтектических – цементит (первичный) + ледебурит.
Превращения, происходящие в твердом состоянии, называются вторичной кристаллизацией. Они связаны с переходом при охлаждении γ-железа в α-железо и распадом аустенита.
Линия GS соответствует температурам начала превращения аустенита в феррит. Ниже линии GS сплавы состоят из феррита и аустенита.
Линия ЕS показывает температуры начала выделения цементита из аустенита вследствие уменьшения растворимости углерода в аустените с понижением температуры. Цементит, выделяющийся из аустенита, называется вторичным цементитом.
В точке S при температуре 727°С и концентрации углерода в аустените 0,8 % образуется эвтектоидная смесь состоящая из феррита и цементита, которая называется перлитом. Перлит получается в результате одновременного выпадения из аустенита частиц феррита и цементита. Процесс превращения аустенита в перлит можно записать формулой А0,8->П[Ф0,03+Ц6,67].
Линия PQ показывает на уменьшение растворимости углерода в феррите при охлаждении и выделении цементита, который называется третичным цементитом.
Следовательно, сплавы, содержащие менее 0,008% углерода (точка Q), являются однофазными и имеют структуру чистого феррита, а сплавы, содержащие углерод от 0,008 до 0,03% – структуру феррит + цементит третичный и называются техническим железом.
Доэвтектоидные стали при температуре ниже 727ºС имеют структуру феррит + перлит и заэвтектоидные – перлит + цементит вторичный в виде сетки по границам зерен.
В доэвтектических чугунах в интервале температур 1147–727ºС при охлаждении из аустенита выделяется цементит вторичный, вследствие уменьшения растворимости углерода (линия ES). По достижении температуры 727ºС (линия PSK) аустенит, обедненный углеродом до 0,8% (точка S), превращаясь в перлит. Таким образом, после окончательного охлаждения структура доэвтектических чугунов состоит из перлита, цементита вторичного и ледебурита превращенного (перлит + цементит).
Структура эвтектических чугунов при температурах ниже 727ºС состоит из ледебурита превращенного. Заэвтектический чугун при температурах ниже 727ºС состоит из ледебурита превращенного и цементита первичного.
Правило фаз устанавливает зависимость между числом степеней свободы, числом компонентов и числом фаз и выражается уравнением:
C = K + 1 – Ф,
где С – число степеней свободы системы;
К – число компонентов, образующих систему;
1 – число внешних факторов (внешним фактором считаем только температуру, так как давление за исключением очень высокого мало влияет на фазовое равновесие сплавов в твердом и жидком состояниях);
Ф – число фаз, находящихся в равновесии.
Сплав железа с углеродом, содержащий 0,8%С, называется эвтектоидной сталью. Его структура при комнатной температуре – перлит.

С помощью диаграммы состояния железо-карбид железа и графика зависимости твердости от температуры отпуска назначьте режим термической обработки (температуру закалки, охлаждающую среду и температуру отпуска) изделий из стали 50, которые должны иметь твердость 230…250 НВ. Опишите микроструктуру и свойства стали 50 после термической обработки.
Критические точки для Ст50: АС1=725ºС, АС3=760ºС.
При нагреве до 700ºС в стали 50 не происходят аллотропические превращения и мы имеем ту же структуру – перлит + феррит, быстро охлаждая (т.к. закалка), имеем также после охлаждения перлит + феррит с теми же механическими свойствами (примерно), что и в исходном состоянии до нагрева под закалку.
Если доэвтектоидную сталь нагреть выше Ас1, но ниже Ас3, то в ее структуре после закалки наряду с мартенситом будут участки феррита. Присутствие феррита как мягкой составляющей снижает твердость стали после закалки. Такая закалка называется неполной. Она обеспечивает хорошие механические свойства и штампуемость. При температуре нагрева структура – аустенит + феррит. При охлаждении со скоростью выше критической происходит мартенситное превращение: γ->М. В результате получаем структуру феррит + мартенсит.
Оптимальный режим нагрева под закалку для доэвтектоидных сталей (%С<0,8%) составляет АС3+(30÷50º), т.е. для Ст50 – 800-820ºС. При этом после закалки имеем мелкое зерно, обеспечивающее наилучшие механические свойства стали 50.
Нагрев и выдержка стали 50 выше температуры 820ºС перед закалкой приводит к росту зерна и ухудшению механических свойств стали после термической обработки. Крупнозернистая структура вызывает повышенную хрупкость стали.
Для обеспечения скорости охлаждения выше критической в качестве среды охлаждения выбираем воду. Структура стали 50 при температуре нагрева под закалку – аустенит, после охлаждения со скоростью выше критической – мартенсит.
Отпуском называется нагрев стали до температуры ниже Ас1, выдержка при заданной температуре и последующее охлаждение с заданной скорость (обычно на воздухе). Отпуск является конечной операцией термической обработки, проводится после закалки для уменьшения внутренних напряжений и получения более равновесной структуры. Напряжения в закаленных изделиях снимаются тем полнее, чем выше температура отпуска.
Для получения твердости 230…250 НВ при диаметре заготовки 20 мм отпуск стали 50 необходимо проводить при температуре 500ºС. Среда охлаждения – вода. При высокотемпературном отпуске образуется структура, которая называется сорбит отпуска. Сорбит отпуска состоит из ферритной основы, пронизанной частицами цементита.
Свойства стали 50 после термической обработки: σт=680-780 МПа, σв=870-970 МПа, δ=13-11%, ψ=61-57%, ан=120-80, НВ=230-250.

Сталь 40 подверглась закалке от температур 760 и 840 ºС. Используя диаграмму состояния железо-цементит, укажите выбранные температуры нагрева и опишите превращения, которые произошли при двух режимах закалки. Какому режиму следует отдать предпочтение и почему?
Закалка доэвтектоидной стали заключается в нагреве стали до температуры выше критической (Ас3), в выдержке и последующем охлаждении со скоростью, превышающей критическую.
Температура точки Ас3 для стали 40 составляет 790°С.
Если доэвтектоидную сталь нагреть выше Ас1, но ниже Ас3, то в ее структуре после закалки наряду с мартенситом будут участки феррита. Присутствие феррита как мягкой составляющей снижает твердость стали после закалки. При нагреве до температуры 760°С (ниже точки Ас3) структура стали 40 – аустенит + феррит, после охлаждения со скоростью выше критической структура стали – мартенсит + феррит.

Рисунок 5 – Фрагмент диаграммы железо-углерод
Аустенит неоднороден по химическому составу. В тех местах, где были пластинки цементита, аустенит богаче углеродом, а где пластинки феррита – беднее. Поэтому при термической обработке для выравнивания химического состава зерен аустенита сталь нагревают немного выше критической точки Ас3 (на 30-50°С) и выдерживают некоторое время при этой температуре. Процесс аустенизации идет тем быстрее, чем выше превышение фактической температуры нагрева под закалку относительно температуры Ас3. Доэвтектоидные стали для полной закалки следует нагревать до температуры на 30-50°С выше Ас3. Температура нагрева стали 40 под полную закалку, таким образом, составляет 820-840°С. Структура стали 40 при температуре нагрева под закалку – аустенит, после охлаждения со скоростью выше критической – мартенсит.
Если нагреть выше этой температуры мелкие зерна аустенита начинают соединяться между собой и чем выше температура нагрева, тем интенсивнее увеличиваются размеры. Крупнозернистая структура ухудшает механические свойства стали.
Поэтому следует отдать предпочтение закалке от температуры 840 ºС.

Что представляет собой морская вода, молоко, проволока из стали - индивидуальные вещества, или же они состоят из нескольких компонентов? В нашей статье мы ознакомимся со свойствами растворов - наиболее распространенных физико-химических систем, имеющих переменный состав. Они могут содержать несколько компонентов. Так, молоко - это органический раствор, содержащий воду, капли жира, молекулы белка и минеральных солей. Что такое раствор и как его можно получить? На этот и другие вопросы мы ответим в нашей статье.

Применение растворов и их роль в природе

Обмен веществ в биогеоценозах осуществляется в виде взаимодействия соединений, растворенных в воде. Например, всасывание почвенного раствора корнями растений, накопление крахмала в результате фотосинтеза у растений, пищеварительные процессы животных и человека - все они представляют собой реакции, протекающие в химических растворах. Невозможно представить современные отрасли: космическое и авиастроение, военную промышленность, атомную энергетику без применения сплавов - твердых растворов с уникальными техническими характеристиками. Несколько газов также могут образовывать смеси, которые мы можем назвать растворами. Например, воздух - это физико-химическая система, которая содержит такие компоненты как азот, кислород, углекислый газ и т. д.

Что такое раствор?

Смешивая между собой сульфатную кислоту и воду, получим ее водный раствор. Рассмотрим, из чего он состоит. Мы обнаружим растворитель - воду, растворенное вещество - серную кислоту и продукты их взаимодействия. К ним относятся катионы водорода, гидросульфат - и Состав физико-химической системы, состоящей из растворителя и компонентов, будет зависеть не только от того, какое вещество является растворителем.

Наиболее распространенный и важный растворитель - это вода. Большое значение имеет и природа растворяемых компонентов. Их можно условно разделить на три группы. Это практически нерастворимые соединения, малорастворимые и хорошо растворимые. Последняя группа является наиболее важной. К ней относится большинство солей, кислоты, щелочи, спирты, моносахариды. Малорастворимые соединения тоже встречаются в природе достаточно часто. Это гипс, азот, метан, кислород. Практически нерастворимыми в воде будут металлы, благородные газы: аргон, гелий и т. д., керосин, масла.

Как количественно выразить растворимость соединения

Концентрация насыщенного раствора - наиболее важная величина, показывающая Ее выражают величиной, численно равной массе соединения в 100 г раствора. Например, дезинфицирующее медицинское средство - салициловый спирт продается в аптеках в виде 1 % спиртового раствора. Это значит, что в 100 г раствора содержится 1 грамм действующего вещества. Какую наибольшую массу хлорида натрия можно растворить в 100 г растворителя при определенной температуре? Найти ответ на этот вопрос можно с помощью специальной таблицы кривых растворимости твердых соединений. Так, при температуре 10 ⁰С можно растворить 38 г поваренной соли в 100 г воды, при 80 ⁰С - 40 г вещества. Как сделать раствор разбавленным? Нужно прилить к нему определенный объем воды. Увеличить концентрацию физико-химической системы можно, выпаривая раствор, или же, прибавляя к нему определенную порцию растворяемого соединения.

Виды растворов

При определенной температуре система может пребывать в равновесии с растворяемым соединением в виде его осадка. В этом случае говорят о насыщенном растворе. Как сделать раствор насыщенным? Для этого нужно обратиться к таблице растворимости твердых веществ. Например, поваренную соль массой 31 г вводят в воду при температуре 20 ºС и нормальном давлении, затем хорошо размешивают. При дополнительном нагревании и введении дополнительной порции соли ее избыток обеспечивает образование пересыщенного раствора. Остывание системы приведет к процессу выпадения кристаллов хлорида натрия. Разбавленными будут называться такие растворы, в которых концентрация соединений по сравнению с объемом растворителя будет достаточной малой. Например, физиологический раствор, входящий в состав кровяной плазмы и применяемый в медицине после перенесенных хирургических вмешательств, представляет собой 0,9 % раствор хлорида натрия.

Механизм растворения веществ

Рассмотрев вопрос, что такое раствор, определим, какие процессы лежат в основе его образования. В основе явления растворения веществ мы видим взаимодействие как физических, так и химических превращений. Главную роль в них играет явление разрушения химических связей: ковалентных полярных или ионных, в молекулах растворяемого соединения. Физический аспект разрыва связей выражается в поглощении энергии. Также происходит взаимодействие частиц растворителя с молекулами растворенного вещества, называемое сольватацией, в случае водных растворов - гидратацией. Оно сопровождается не только возникновением новых связей, но и выделением энергии.

В нашей статье мы рассмотрели вопрос, что такое раствор, а также выяснили механизм образования растворов и их значение.

Хлористый натрий, сахар, этиловый спирт и вода представляют собой чистые вещества. Каждое из этих веществ характеризуется определенными свойствами, например давлением пара, температурой плавления, температурой кипения, плотностью. Предположим, что мы смешиваем некоторые из этих веществ. Хлористый натрий, внесенный в воду, растворяется в ней. Твердое вещество исчезает, переходя в жидкую фазу. Точно так же растворяется в воде сахар. Если добавить к воде этиловый спирт, то два чистых вещества смешиваются и образуют жидкость, по внешнему виду похожую на воду и спирт. Смеси соль - вода, сахар - вода, этиловый спирт - вода называются растворами. От чистых веществ растворы отличаются тем, что их свойства изменяются в зависимости от относительных количеств растворителя и растворенного вещества. Растворы при фазовых переходах ведут себя совсем иначе, чем чистые вещества. Это позволяет провести строгое разграничение между растворами и чистыми веществами и служит основой для решения вопроса о том, является данное вещество чистым веществом или раствором.

Различия между чистыми веществами и растворами

Земная кора состоит из многих непохожих друг на друга частей - она неоднородна, или гетерогенна. Некоторые её части однородны, или гомогенны. Хорошо известными примерами гетерогенных веществ являются гранит, состоящий из смеси различных минералов, приправа к салату, состоящая из капель масла, суспендированных в водной уксусной кислоте, и черный дым, состоящий из взвеси частиц сажи в воздухе. Примерами гомогенных веществ являются алмаз, чистая вода, соленая вода и чистый воздух. Гетерогенные вещества довольно трудно описать и: классифицировать. Гомогенные вещества можно описать довольно точно.

Как чистые вещества, так и растворы являются гомогенными. Гомогенное вещество, состоящее только из одного вещества, называется чистым веществом. Раствор - это гомогенное вещество, состоящее из двух или нескольких веществ.

Мы употребляем термины газовая фаза, жидкая фаза, твердая фаза. Фаза - это гомогенная часть системы, которая характеризуется одинаковыми свойствами и составом. В свою очередь системой называется область и вещество в ней, которое мы рассматриваем. Система может состоять из одной или нескольких фаз.

Для примера сравним два жидких образца - чистую воду и соленую воду. Оба образца - гомогенные системы, состоящие из одной фазы. Однако первая жидкость представляет собой чистое вещество, а вторая - раствор. Мы не можем только по внешнему виду сказать, какая из этих прозрачных жидкостей - чистое вещество и какая - раствор. Правда, между ними существует различие - например, соленая вода имеет больший удельный вес, чем чистая, но это свойство не показывает, какой из образцов - чистое вещество.

Сравним поведение этих двух систем при фазовом переходе. Сначала посмотрим, что происходит с водой при замерзании или испарении. Чистая вода замерзает при определенной температуре, равной 0° С. Заморозим половину воды, поместим образовавшийся лед в другой сосуд, расплавим его и сравним полученные образцы воды. Оказывается, их нельзя различить. Далее, если испарить половину воды, сконденсировать образовавшийся пар в другом сосуде и сравнить образцы воды, мы увидим, что их тоже нельзя отличить друг от друга. Такое поведение при испарении (и конденсации), а также при замерзании (и плавлении) характеризует чистые вещества. Растворы ведут себя совсем иначе.

Предположим, что мы испарим часть соленой воды. Температура жидкости повышается, пока не начнется кипение. Температура кипения соленой воды выше, чем чистой. Температура чистой воды при кипении остается постоянной, в то время как температура кипения соленой воды повышается. По мере повышения температуры кипения концентрация соли в воде увеличивается. Если собрать пар, образующийся при кипении соленой воды, и сконденсировать его в отдельном сосуде, то мы обнаружим, что эта жидкость по своим свойствам напоминает чистую воду, а не раствор, из которого она получена. После испарения всей воды остается твердая соль. Таким образом, путем перегонки, т. е. испарением и последующей конденсацией в другом сосуде, можно отделить чистую жидкость от раствора, а путем кристаллизации, т. е. образования кристаллического твердого вещества, можно получить чистое твердое вещество из раствора. Химики называют чистую жидкость, полученную при перегонке раствора, и чистое твердое вещество, полученное при кристаллизации, компонентами раствора.

Чистый хлористый натрий, подобно чистой воде, имеет определенную температуру плавления (замерзания) при данном давлении. Операции разделения, например перегонка или вымораживание, не приводят к выделению компонентов соли. Состав соли, выраженный соотношением чисел атомов натрия и хлора или соотношением весов этих атомов, является постоянным и соответствует формуле NaCl. Хлористый натрий, как и вода, представляет собой чистое вещество.

С другой стороны, такие операции, как перегонка или вымораживание, обычно приводят к выделению из раствора чистых веществ, находившихся в растворе. Чем ближе по свойствам компоненты, тем труднее выделить их из раствора. Но даже в трудных случаях с помощью различных методов обычно можно осуществить разделение. В природе растворы встречаются гораздо чаще, чем чистые вещества, а гетерогенные системы - чаще, чем растворы. Чистые вещества часто приходится получать из растворов, используя соответствующие фазовые переходы.

Растворами называются гомогенные системы, содержащие не менее двух веществ. Могут существовать растворы твердых, жидких и газообразных веществ в жидких растворителях, а также однородные смеси (растворы) твердых, жидких и газообразных веществ. Как правило, вещество, взятое в избытке и в том же аг­регатном состоянии, что и сам раствор, принято считать растворителем , а компонент, взятый в недостатке – растворенным веществом .

В зависимости от агрегатного состояния растворителя различают газообразные , жидкие и твердые растворы.

Газообразными растворами являются воздух и другие смеси газов.

К жидким растворам относят гомогенные смеси газов, жид­костей и твердых тел с жидкостями.

Твердыми растворами являются многие сплавы, например, металлов друг с другом, стёкла. Наибольшее значение имеют жидкие смеси, в которых растворителем является жидкость. Наи­более распространенным растворителем из неорганических ве­ществ, конечно же, является вода. Из органических веществ в качестве растворителей используют метанол, этанол, диэтиловый эфир, ацетон, бензол, четыреххлористый углерод и др.

В процессе растворения частицы (ионы или молекулы) рас­творяемого вещества под действием хаотически движущихся час­тиц растворителя переходят в раствор, образуя в результате бес­порядочного движения частиц качественно новую однородную систему. Способность к образованию растворов выражена у разных веществ в различной степени. Одни вещества способны смешиваться друг с другом в любых количествах (вода и спирт), другие – в ограниченных (хлорид натрия и вода).

Сущность процесса образования раствора можно показать на примере растворения твердого вещества в жидкости. С точки зрения молекулярно-кинетической теории растворение протекает следующим образом: при внесении в растворитель какого-либо твердого вещества, например, поваренной соли, частицы ионов Na + и Cl – , находящиеся на поверхности, в результате колебатель­ного движения, увеличивающегося при соударении с частицами растворителя, могут отрываться и переходить в растворитель. Этот процесс распространяется на следующие слои частиц, кото­рые обнажаются в кристалле после удаления поверхностного слоя. Так постепенно частицы, образующие кристалл (ионы или молекулы), переходят в раствор. На рис дана наглядная схема разрушения ионной кристаллической решетки NaС l при раство­рении в воде, состоящей из полярных молекул.

Частицы, перешедшие в раствор, вследствие диффузии распределяются по всему объему растворителя. С другой стороны, по мере увеличения концентрации частицы (ионы, молекулы), на­ходящиеся в непрерывном движении, при столкновении с твердой поверхностью еще не растворившегося вещества могут задерживаться на ней, т.е. растворение всегда сопровождается обратным явлением – кристаллизацией . Может наступить такой момент, когда одновременно выделяется из раствора столько же частиц (ионов, молекул), сколько их переходит в раствор – наступает равновесие.

По соотношению преобладания числа частиц, переходящих в раствор или удаляющихся из раствора, различают растворы на­сыщенные , ненасыщенные и пересыщенные . По относительным количествам растворенного вещества и растворителя растворы подразделяют на разбавленные и концентрированные .

Раствор, в котором данное вещество при данной температуре больше не растворяется, т.е. раствор, находящийся в равновесии с растворяемым веществом, называют насыщенным , а раствор, в котором еще можно растворить добавочное количество данного вещества, – ненасыщенным .

Насыщенный раствор содержит максимально возможное (для данных условий) количество растворенного вещества. Следова­тельно, насыщенным раствором является такой раствор, который находится в равновесии с избытком растворенного вещества. Концентрация насыщенного раствора (растворимость) для данно­го вещества при строго определенных условиях (температура, растворитель) – величина постоянная.

Раствор, содержащий растворенного вещества больше, чем его должно быть в данных условиях в насыщенном растворе, на­зывается пересыщенным . Пересыщенные растворы представляют собой неустойчивые, неравновесные системы, в которых наблю­дается самопроизвольный переход в равновесное состояние. При этом выделяется избыток растворенного вещества, и раствор ста­новится насыщенным.

Насыщенный и ненасыщенный растворы нельзя путать с разбавленным и концентрированным. Разбавленные растворы – растворы с небольшим содержанием растворен­ного вещества; концентрированные растворы – растворы с большим содержанием растворенного вещества. Необходимо подчеркнуть, что понятие разбавленный и концентрированный растворы являются относительными, выражающими только соот­ношение количеств растворенного вещества и растворителя в растворе.

Сравнивая растворимость различных веществ, мы видим, что насыщенные растворы малорастворимых веществ являются разбавленными, а хорошо растворимых веществ – хотя и ненасы­щенные, но довольно концентрированными.

В зависимости от то­го, электронейтральными или заряженными частицами являются компоненты раствора, их подразделяют на молекулярные (растворы неэлектролитов) и ионные (растворы электролитов). Одна из характерных особенностей растворов электролитов за­ключается в том, что они проводят электрический ток.

Некоторые лекарственные средства пользуются особенной популярностью среди пациентов и врачей. Многие из них можно легко приобрести в свободном доступе без рецепта и использовать без консультации со специалистом. Как раз к таким препаратам относится раствор хлорида натрия, известный также как физиологический раствор. Это средство широко применяется для наружного и внутреннего применения, а также для внутривенного введения. Давайте поговорим о том, что собой представляет физиологический раствор, приготовление его обсудим, применение и состав чуть более подробно.

Что такое физиологический раствор, состав его какой?

Физиологический раствор представляет собой не что иное, как водный раствор соли – натрия хлорида. В промышленных фармакологических условиях для его приготовления используют дистиллированную воду, несколько разновидностей солей, а также глюкозу и некоторое количество углекислого газа, позволяющего избежать осадка.

Домашний вариант физиологического раствора в большей части случаев готовится из воды и поваренной соли. Такой раствор годится в основном для наружного применения.

Где требуется физиологический раствор, применение его какое?

Медики применяют раствор для проведения реанимационных мероприятий. Ним разводят самые разные медикаменты, а также используют для хранения глазных линз.
Физиологический раствор вводят большей частью в форме капельниц, также его могут применять в составе клизм. Основным показанием к капельному введению считают обезвоживание, интоксикацию, токсикоз беременных, чрезмерную отечность и кровопотерю. В серьезных ситуациях физиологический раствор вполне способен стать заменителем крови.

Физраствор – это отличная основа для разведения различных медикаментов, как для капельниц, так и для инъекций внутримышечного и подкожного типа. Также на его основе готовят ингаляции. При использовании физиологического раствора для разведения медикаментов, он позволяет достичь нужной концентрации препарата и уменьшить болезненность такой процедуры.

Еще медики частенько применяют физиологический раствор для пропитки повязок, которые накладывают на гнойные раны для улучшенного оттока гноя.

Физиологический раствор применение в домашних условиях

Домашний физиологический раствор поваренной соли может использоваться для внутреннего потребления. Его можно пить для устранения последствий теплового удара, отравлений и обезвоживания.

Такое средство отлично подходит для при ринитах самого разного типа (в том числе и аллергического). Физиологический раствор замечательно разжижает содержимое носа, облегчает носовое дыхание и смягчает слизистые. Его можно применять при гайморите.

Данное лекарственное средство отлично подходит для промывания глаз, такие процедуры помогут пациентам с воспалительными процессами (к примеру, с конъюнктивитом) и аллергией. В нем можно еще и хранить контактные линзы.

Физиологический раствор часто советуют применять для проведения ингаляций с небулайзером. Такое средство может применяться для разведения лекарств, а при аллергии его рекомендуют применять в чистом виде. При таких процедурах физиологический раствор замечательно разжижает мокроту и снимает раздражение.

Также в домашних условиях можно использовать такое нехитрое лекарство для промывания ранок, если под рукой нет прочих антисептиков.

Приготовление физиологического раствора

Аптечный физиологический раствор изготавливается на основе дистиллированной воды. Но чтобы совершать промывания и ингаляции, можно сделать такое средство и своими силами. В основе домашнего физиологического раствора должна находиться кипяченая вода (если вы используете бутылированную воду, можете ее не кипятить).

Лучше всего подогреть воду до тридцати семи-сорока градусов. Растворите в литре воды девять грамм соли – при отсутствии точных весов используйте чайную ложечку поваренной соли (с горкой). Отдайте предпочтение белой очищенной соли, всыпьте ее в подогретую воду и перемешивайте до тех пор, пока соль полностью не растворится. Если в жидкости просматривается примесь и/или осадок, профильтруйте ее.

Такой домашний физиологический раствор можно хранить недолго – не более суток.

Физиологический раствор в народной медицине

Если вы собираетесь использовать физиологический раствор для промывания носа, добавьте к нему капельку йода. Так его уникальные антисептические качества будут более выраженными. Такое средство можно просто влить в пустой чистый флакончик со спринцовкой и брызгать в нос по необходимости. Также можно втягивать раствор носом. Маленьким детям физиологический раствор советуют использовать для впрыскиваний и закапываний, ведь промывание у малышей может стать причиной отита.

Домашний физраствор может использоваться для смягчения и растворения корочек в носовых ходах у новорожденных деток. Его закапывают буквально по одной-две капельки, а спустя некоторое время проводят очистку носа ватными жгутиками.

Домашний физиологический раствор может использоваться и для профилактики и для лечения обезвоживания у детей и взрослых. Такое средство будет полезно при активной потере жидкости организмом – во время поноса, рвоты, высокой температуры и пр. Для коррекции обезвоживания в воде нужно развести не только соль, но и сахар. На литр воды используйте по чайной ложечке соли и сахара.

Физиологический раствор, приготовленный в домашних условиях, может стать неплохим подспорьем в лечении и профилактике многих патологических состояний.

Понравилась статья? Поделиться с друзьями: