Ученые внесшие вклад развитие физиологии. Краткая история физиологии

Нормальная физиология Николай Александрович Агаджанян

Глава 1. История физиологии. Методы физиологических исследований

Физиология – важная область человеческого знания, наука о жизнедеятельности целостного организма, физиологических систем, органов, клеток и отдельных клеточных структур. Как важнейшая синтетическая отрасль знаний физиология стремится вскрыть механизмы регуляции и закономерности жизнедеятельности организма и взаимодействия его с окружающей средой. Физиология является базисом, теоретической основой – философией медицины, объединяющей разрозненные знания и факты в одно целое. Врач оценивает состояние человека, уровень его дееспособности по степени функциональных нарушений, т. е. по характеру и величине отклонения от нормы важнейших физиологических функций. Для того чтобы вернуть эти отклонения к норме, необходимо учитывать индивидуальные возрастные, этнические особенности организма, а также экологические и социальные условия среды обитания.

При фармакологической коррекции нарушенных в неадекватных условиях функций организма следует обращать внимание не только на особенности влияния природно-климатических и производственных условий среды обитания, но и на характер антропогенного загрязнения – количество и качество вредных высокотоксичных веществ в атмосфере, воде, продуктах питания.

Структура и функция тесно связаны между собой и взаимо-обусловлены. Для интегративной оценки жизнедеятельности целостного организма физиология синтезирует конкретные комплексные сведения, полученные такими науками, как анатомия, цитология, гистология, молекулярная биология, биохимия, экология, биофизика и смежными с ними. Для оценки всего многообразия сложных физиологических процессов, которые протекают в организме в ходе адаптации, необходим системный подход и глубокое философское осмысление и обобщение. Физиологические знания были добыты в результате накопленных учеными разных стран оригинальных экспериментальных материалов.

Главный объект медицинского исследования – человек, но основные физиологические закономерности по известной причине установлены в экспериментах на различных видах животных как в лабораторных, так и естественных условиях. Чем выше организация животного, чем ближе изучаемый объект подходит к человеку, тем ценнее полученные результаты. Однако результаты экспериментальных исследований на животных в области сравнительной и экологической физиологии могут быть перенесены на человека только после тщательного анализа и обязательного критического сопоставления полученных материалов с клиническими данными.

При возникновении у обследуемого признаков функциональных нарушений, например, при адаптации в неадекватных условиях, экстремальных воздействиях или при приеме фармакологических препаратов физиолог должен осмыслить, объяснить, чем детерминированы эти нарушения, и дать эколого-физиологическое обоснование. Одним из основных жизненных свойств является способность организма к компенсации, т. е. к выравниванию отклонений от нормы, восстановлению тем или иным путем нарушенной функции.

Физиология изучает новое качество живого – его функцию или проявления жизнедеятельности организма и его частей, направленные на достижение полезного результата и обладающие приспособительными свойствами. В основе жизнедеятельности любой функции лежит обмен веществ, энергии и информацией.

Условия существования человека определяются специфическими физическими и химическими особенностями внутренней и внешней среды, природно-климатическими факторами, а также социально-культурными традициями и качеством жизни населения. Феногенотипическую особенность каждого индивидуума надо учитывать при использовании фармакологических препаратов.

В основе формирования сложной физиологической системы каждого организма лежит индивидуальная временная шкала. Методологические принципы биоритмологии – хронофизиологии, хронофармакологии в настоящее время уверенно проникают в исследования всех уровней организации живого – от молекулярного до целостного организма. Ритмичность как одна из фундаментальных особенностей функционирования организма непосредственно связана с механизмами обратной связи, саморегуляции и адаптации. При проведении хронофизиологических и хронофармакологических исследований необходимо учитывать данные о сезоне года, времени суток, возрасте, типологических и конституциональных особенностях организма и экологических условиях среды обитания.

Основная суть жизни проявляется в осуществлении двух принципиально важных процессов – рождения и выживания. Потребность сохранения жизни человека была на всех этапах его развития, и уже в древности формировались элементарные представления о деятельности организма человека.

Отец медицины Гиппократ (460 – 377 гг. до н.э.) заложил основы для понимания роли отдельных систем и функций организма как целого. Подобных воззрений придерживался и другой знаменитый врач древности – римский анатом Гален (201 – 131гг. до н.э.). Гуморальные гипотезы и теории в течение целых тысячелетий оставались господствующими и среди врачей древнего Китая, Индии, Ближнего Востока и Европы.

На важность временных факторов и циклических изменений окружающей среды впервые указывал еще Аристотель (384 – 322 гг. до н. э.). Он писал: «Продолжительность всех этих явлений: и беременности, и развития, и жизни – совершенно естественно измерять периодами. Я называю периодами день и ночь, месяц, год и времена, измеряемые ими; кроме того, лунные периоды…». Все эти оригинальные идеи на какое-то время были забыты. Их основательное изучение началось на базе научного наблюдения и опыта лишь в эпоху Возрождения. Крупнейший врач этой эпохи Т. Парацельс (1493 – 1541 гг.) подчеркивал в своих трудах, что теория врача – это опыт, никто не может стать врачом без науки и опыта.

Дальнейшему развитию физиологии предшествовали успехи анатомии. Работа профессора Падуанского университета – анатома и физиолога А. Везалия «О строении человеческого тела» подготовила почву для открытий в области физиологии. Углубление знаний о строении тканей животных побуждает к изучению функционального назначения разнообразных структур.

Рене Декарт (1596–1650 гг.) сформулировал рефлекторный принцип организации движений – принцип отражения в ответ на побуждающий их стимул. Декарт пытался законами механики объяснить как ход небесных светил, так и поведение животных.

В этот же период, в 1628 г. Вильям Гарвей (1578–1657 гг.) опубликовал свою работу «Анатомические исследования о движении сердца и крови у животных». Открытие Гарвеем кровообращения считается датой основания физиологии. Он ввел в практику научных исследований прием, получивший название вивисекции, или живосечения.

М. Мальпиги (1628- 1694 гг.), используя микроскоп, в 1661 г. показал, что артерии и вены соединяются между собой мельчайшими сосудами – капиллярами, благодаря которым в организме образуется замкнутая сеть кровеносных сосудов.

В 1822 г. Ф. Мажанди (1785–1855 гг.) доказал раздельное существование чувствительных – афферентных (центростремительных) и двигательных – эфферентных (центробежных) нервных волокон. Это явилось важным шагом в установлении связей между функциями нервной системы и ее структурой.

В 1842 г. ученик Н. И. Пирогова А. П. Вальтер (1817–1889 гг.) установил влияние нервной системы на «внутренние» процессы в организме. В том же году В. А. Басов (1812–1879 гг.) разработал оригинальную методику доступа в желудок совершенно здорового животного путем наложения желудочной фистулы. Этими ис-следованиями впервые в физиологии была доказана возможность проведения хронического эксперимента для длительного наблюдения и изучения функций организма.

Основоположником отечественной экспериментальной физиологии является профессор Московского университета А. М. Филомафитский (1802–1849 гг.), изучавший вопросы, связанные с физиологией дыхания, переливанием крови, применением наркоза. Он написал первый учебник по физиологии.

Три великих открытия естествознания – закон сохранения энергии, клеточная теория и эволюционное учение – явились основой развития многих естественно-научных дисциплин. На базе физико-химических знаний во второй половине XIX столетия стала интенсивно развиваться физиология. Возникли физиологические школы, привлекающие молодых ученых из разных стран (К. Людвиг, Р. Гейденгайн и других). В этот период были достигнуты определяющие успехи в углубленном изучении деятельности органов и систем, развивалась физиология нервов и мышц как возбудимых тканей (Дюбуа Реймон, Г. Гельмгольц, Э. Пфлюгер).

Большой вклад в разработку физиологических проблем внес Клод Бернар, который изучал роль нервной системы в регуляции тонуса кровеносных сосудов и углеводного обмена, а также создал представление о внутренней среде организма как основе «свободной» жизни.

Новый этап русской и мировой физиологии начинается работами И. М. Сеченова (1829- 1905 гг.). Его по праву называют «отцом русской физиологии». Первые его работы были посвящены вопросам переноса газов кровью, разработке проблем гипоксических состояний. И. М. Сеченов и Поль Бер независимо друг от друга объяснили причину гибели французских аэронавтов, поднявшихся на аэростате «Зенит» на высоту более 8000 м, где имел место острый недостаток кислорода в разреженной атмосфере вдыхаемого воздуха. И. М. Сеченов показал, что гемоглобин эритроцитов переносит не только кислород, по и углекислоту. Его научная деятельность многогранна. Он разрабатывал вопросы физиологии труда. Изучая процесс утомления, впервые научно обосновал и установил значение активного отдыха. Всеобщее признание получило открытие И. М. Сеченовым явления центрального торможения. В 1863 г. вышла в свет его знаменитая книга «Рефлексы головного мозга», в которой сформулировано материалистическое положение о рефлекторной деятельности головного мозга, о том, что все бесконечное разнообразие внешних проявлений мозговой деятельности сводится в конечном итоге к одному лишь явлению – к мышечному движению.

И. М. Сеченов вошел в историю науки как великий ученый-мыслитель, дерзнувший подвергнуть анализу естествоиспытателя самую сложную область природы – явления сознания высших отделов головного мозга. Обогатив науку величайшими открытиями, он выдвинул наиболее правильные представления по важнейшим принципиальным вопросам физиологии, создал первую в России физиологическую школу. Его учениками были Н. Е. Введенский, В. Ф. Вериго, А. Ф. Самойлов.

Идеи, разработанные И. М. Сеченовым, были развиты в трудах И. П. Павлова (1849- 1936 гг.) и его многочисленных учеников. И. П. Павлов вывел рефлекторную деятельность мозга на качественно новый уровень, создав учение о высшей нервной деятельности (поведении) человека и животных, ее проявлениях в норме и при патологии.

Научная деятельность И. П. Павлова развивалась в трех основных направлениях: изучение важнейших проблем физиологии кровообращения (1874–1889 гг.), физиологии пищеварения (1889- 1901 гг.), высшей нервной деятельности (1901 – 1936 гг.). В 1904 г. И. П. Павлов получил крупнейшую международную награду – Нобелевскую премию. В 1935 г., незадолго до смерти И. П. Павлова, Международный физиологический конгресс присвоил ему звание «старейшины физиологов мира».

Учениками и последователями И. П. Павлова были Л. А. Орбели, П. К. Анохин, Э. А. Асратян, К. М. Быков и многие другие, которые своими фундаментальными трудами способствовали дальнейшему развитию основных положений учения о высшей нервной деятельности. Распространение естественно-научного исследования на высшие формы нервной деятельности основывалось на принципах детерминизма (причинности), структурности.

Исследование высшей нервной деятельности на основе дальнейшего развития рефлекторной теории, выявление объективных законов этой деятельности составляет ярчайшую страницу современного естествознания. Вклад отечественных ученых в мировую науку о мозге общепризнан, многое сделано и в изучении локализации функций в мозге (В. М. Бехтерев, Н. А. Миславский и др.) Физиология мозга и других важнейших систем организма успешно развивается в странах Европы и в США. Основные принципы координационной деятельности мозга были разработаны и сформулированы Ч. С. Шеррингтоном (1856–1952 гг.). Его работы вместе с результатами исследований электрофизиолога Э. Д. Эдриана (1889–1977 гг.) были в 1932 г. удостоены Нобелевской премии.

За исследования капиллярного кровообращения Нобелевскую премию получил А. Крог. Большой научный вклад в физиологию сердечно-сосудистой системы внесли отечественные ученые В. В. Парин, В. Н. Черниговский и др. За работы в области физиологии дыхания и в частности – выяснения механизмов регуляции этой важнейшей функции Нобелевской премии был удостоен К. Гейманс, а за открытие ферментативного механизма клеточного дыхания – О. Г. Варбург.

Велик вклад ученых в физиологию дыхательного центра и его роли в регуляции дыхания (Н. А. Миславский, Д. С. Холдейн, М. В. Сергиевский). Большое значение имели работы Ф. В. Овсянникова, описавшего сосудодвигательный центр.

В области физиологии пищеварения, продолжая славные традиции первооткрывателей, огромный вклад внесли И. П. Разенков, Г. В. Фольборт, Б. П. Бабкин и др. Особенно следует отметить заслуги A. M. Уголева, которому принадлежит честь открытия мембранного кишечного пищеварения, а также вклад в разработку современной концепции эндокринной деятельности желудочно-кишечного тракта.

Наше столетие богато открытиями в области изучения желез внутренней секреции. Целой плеяде замечательных ученых присуждены Нобелевские премии за работы по инсулину, дважды за открытия в области физиологии гипофиза, за исследование функции надпочечников, за регуляцию и гормональное воздействие на обмен веществ.

В разработке медико-биологических проблем наибольшие успехи в этом столетии достигнуты иммунологами. За открытия в этой области учеными разных стран получено наибольшее число Нобелевских премий – одиннадцать! Среди них и выдающиеся физиологи, биохимики, клиницисты и представители других смежных наук.

Если XIX век характеризуется как период расцвета аналитической физиологии, когда были сделаны выдающиеся открытия по всем важнейшим физиологическим системам, то XX век – период интеграции и специализации наук.

Именно в двадцатом столетии выделились два основных направления развития физиологической науки:

1. Глубокое изучение физико-химических процессов в клетках, мембранах, преобразований на молекулярном уровне. Делаются принципиальные открытия в области цитофизиологии и цитохимии, утверждается мембранная теория биоэлектрических потенциалов. За создание этой теории и установление ионных механизмов возбуждения нейронов в 1963 г. были удостоены Нобелевской премии Д. Экклс, Э. Хаксли, А. Ходжкин.

2. Формирование представлений о единстве организма, гомеостазе (К. Бернар, У. Кеннон) и взаимосвязи организма с окружающей внешней средой (И. М. Сеченов, И. П. Павлов).

На основе всего этого в настоящее время успешно развиваются адаптология, биоритмология, а также междисциплинарная область знаний – экология человека. В условиях резкого изменения и антропогенного загрязнения среды обитания человека, необычайной миграционной подвижности, урбанизации, сложных демографических процессов в масштабах планеты становятся приоритетными такие медико-биологические направления как разработка физиологически обоснованных средств охраны здоровья населения и экологической безопасности биосферы.

Отрицательные факторы антропогенного воздействия способствуют снижению резервов здоровья, нарастанию степени психофизиологического напряжения, появлению новых форм экологических болезней. Деятельность человека как существа биосоциального изучают гуманитарные науки, а как эта деятельность реализуется в его живом теле исследуют физиология и экология человека. Со временем физиология может дать конкретные рекомендации для сохранения здоровья биосферы и совершенствования общества и самого человека.

В новых природных и производственных условиях человек нередко испытывает влияние весьма необычных, чрезмерных и жестких факторов среды, неадекватных его природе. Речь идет о специфической и весьма сложной социально-биологической адаптации в зонах экологического бедствия, в огромных городахгигантах, в условиях аридной зоны, Арктики, Антарктики и Заполярья, в подводных сооружениях и пещерах, в обитаемых космических летательных аппаратах.

В исследовании физиологических механизмов адаптации человека в экстремальных природных и производственных условиях, разработке объективных критериев и путей оптимизации адаптации, а также создании таких важнейших новых направлений, как космическая, экологическая, социальная физиология, хронофизиология, высокогорная и спортивная физиология, несомненно, приоритет принадлежит отечественным ученым. Внедрение в науку современных электронно-вычислительных машин и механизмов позволило физиологам использовать в своих исследованиях современную аппаратуру и дало возможность при анализе качественно и количественно оценить полученные результаты.

Знание важнейших физиологических закономерностей позволило в современных условиях создать их математические модели, с помощью которых жизненные процессы воспроизводят на компьютерах, исследуя различные варианты реакции при воздействии на организм лекарственных веществ, а также неблагоприятных экологических факторов.

Союз физиологии и современных компьютеров, несомненно, оказывается полезным, особенно в чрезвычайных условиях при дефиците времени и проведении сложных исследований мозговой деятельности, хирургических операций, при реанимации, тяжелых отравлениях, но во всем нужна мера. Чрезмерное увлечение компьютерами, сложными приборами и механизмами деформирует мышление врача. Используя для физиологических исследований самую совершенную машину, надо помнить, что компьютер и любой механизм лишен абстрактного мышления, а главное – духовности.

Знание физиологических закономерностей потребовалось не только для научной организации и повышения производительности труда. Использование действующих в организме принципов высочайшего совершенства в конструкции и управлении функциями живых организмов открывает новые перспективы для научно-технического прогресса, создания новейших машин и механизмов. На стыке физиологии и других естественных и технических наук рождаются новые науки и научные направления, в частности, бионика, иммунология, нейрокибернетика, биотехнология, биоэнергетика и другие. Физиология и экология человека синтезируют все естествознание в единую фундаментальную и всеобъемлющую науку о ЧЕЛОВЕКЕ.

Из книги Основы физиологии высшей нервной деятельности автора Александр Борисович Коган

Из книги Антистресс-тренинг автора Дмитрий Ковпак

Произвольное изменение параметров физиологических реакций Саморегуляция – это, по сути, совокупность способов достижения спокойствия, воздействия на телесные реакции, которыми можно произвольно изменять физиологические параметры деятельности организма. Такая

Из книги Очищение. Том 1. Организм. Психика. Тело. Сознание автора Александр Александрович Шевцов

Глава 1. Метафизика физиологии. Карманов Сейчас все чаще появляются работы, которые как бы сожалеют о том, что Физиология шла на захват научного Олимпа слишком грубо, не заботясь о неуязвимости и тонком философском обосновании своих заявок. Именно такой Метафизикой

Из книги Болезни кожи. Освободиться и забыть. Навсегда автора

Глава 2 Ваша кожа: о физиологии Кожа является самым поверхностным и самым крупным органом человеческого организма. Общая площадь кожных покровов человека составляет около двух квадратных метров, а масса кожи вместе с подкожной жировой клетчаткой колеблется от 7 до 11

Из книги Астма. Освободиться и забыть. Навсегда автора Ирина Германовна Малкина-Пых

Глава 2 Бронхиальная астма: о физиологии Для того чтобы понять, почему и как появляются типичные для бронхиальной астмы симптомы (прежде всего приступы удушья), рассмотрим, как работают бронхи и легкие в нормальном режиме (Немцов, 2001).2.1. Как работает наша дыхательная

Из книги Лишний вес. Освободиться и забыть. Навсегда автора Ирина Германовна Малкина-Пых

Глава 2 Лишний вес: о физиологии Ожирение определяется как накопление жира в организме, приводящее к увеличению массы тела на 15–20 % и более от средних нормальных величин. В медицине выделяют четыре степени ожирения: 1-я степень – избыток массы тела на 20–29 % превышает

Из книги Диабет. Освободиться и забыть. Навсегда автора Ирина Германовна Малкина-Пых

Глава 2 Сахарный диабет: о физиологии Сахарный диабет – это болезнь обмена веществ, базирующаяся на недостаточности инсулина. Он представляет собой расстройство метаболизма и сосудистой системы, проявляющееся в том, что организм не в состоянии нормально перерабатывать

Из книги Головная боль. Освободиться и забыть. Навсегда автора Ирина Германовна Малкина-Пых

Глава 2 Головная боль: о физиологии Боль – одно из самых распространенных ощущений. Многие знают, что характер, степень выраженности, продолжительность, локализация и другие особенности боли могут быть очень разными. Не существует двух людей, которые бы одинаково

Из книги История медицины автора Татьяна Сергеевна Сорокина

Глава 10. Нобелевские премии в области медицины и физиологии и смежных с ними наук Наука интернациональна по своей сути. Общие принципы познания законов природы, единые для всего живого и неживого мира законы развития объединяют ученых различных стран и научных школ.В

Из книги Лекарство от стресса, или Исцеляющее сознание автора Сюзанна Скерлок-Дюрана

Глава восьмая. Использование Исследований и пяти Принципов для интеграции энергии в тело и обновления Забавные примеры и истории из жизни, содержащиеся в этой главе, приведены в качестве иллюстрации того, насколько широк круг проблем, с которыми люди сталкиваются

Из книги Диетология: Руководство автора Коллектив авторов

Глава 2 Основы физиологии и патофизиологии пищеварения Организм человека в процессе жизнедеятельности расходует различные вещества и значительное количество энергии. Из внешней среды должны поступать вещества, необходимые для пластических и энергетических

Из книги Естественные технологии биологических систем автора Александр Михайлович Уголев

Из книги Тайная мудрость человеческого организма автора Александр Соломонович Залманов

Многообразие различных физиологических регуляций и их интеграции В течение тысячелетий организм человека и животных умел приспособиться к огромным температурным изменениям. Самые северные народы, живущие за Полярным кругом, как и их олени и собаки, проводят свою жизнь

Из книги Биоритмы, или Как стать здоровым автора Валерий Анатольевич Доскин

Десинхронизация ритмов физиологических функций Нарушения биологических ритмов могут обусловливаться не только внешними влияниями, но и расстройствами тех или других органов. Причины дизритмии, или нарушения ритма физиологических функций, чрезвычайно разнообразны,

Из книги Скульптурная гимнастика для мышц, суставов и внутренних органов. автора Анатолий Ситель

Глава 1 Необходимые знания по анатомии и физиологии человека Человеческий организм состоит из миллиардов клеток, строго дифференцированных по функциям и строению (костные, мышечные, кожные, кровеносные, нервные и др.) и объединенных в иерархические функциональные

Из книги Справочник окулиста автора Вера Подколзина

ДРУГИЕ ВИДЫ И МЕТОДЫ ИССЛЕДОВАНИЙ В настоящее время офтальмология оснащается новыми приборами, созданными на основе современной передовой технологии, с высоким качеством изображения и разрешающей способностью, с уникальными системами анализа, которые дают

Физиология как наука, применяющая экспериментальный метод исследования, ведет свое начало от работ английского врача, анатома и физиолога Вильяма Гарвея, который своим открытием кровообращения, по словам Ф. Энгельса, «делает науку из физиологии (человека, а также животных)». В известном труде Гарвея, опубликованном в 1628 г. под названием «Анатомическое исследование о движении сердца и крови у животных*), было дано правильное, основанное на многочисленных наблюдениях и опытах представление о большом и малом кругах кровообращения и о сердце как двигателе крови в организме. Открытие кровообращения стало мощным стимулом для развития физиологии. Оно было обусловлено происходившим в то время переворотом в идеологии и всей совокупностью явлений общественной жизни той эпохи.

XVI -XVII столетия были в Европе эпохой смены общественно-экономических формации: феодализм сменялся капитализмом. Возникновение капитализма было связано с распшреппем торговых связей, открытием новых рынков сырья и сбыта товаров, развитием мореплавания и средств сообщения. Это способствовало развитию таких дисциплин, как астрономия, математика и механика. Быстрые успехи этих наук, без которых невозможна точная ориентировка во времени и пространстве вызвали переворот в идеологии, который отразился на развитии всех наук, в том числе и физиологии. Плодом революции в мировоззрении, происходившей в то время и отражавшей революционный дух эпохи, явилось новое отношение к научным исследованиям. Причиной и одновременно следствием этого нового отношеппя были подрыв доверия к церкви и к трудам древних ученых, авторитет которых сковыпал умы и заставлял видеть несуществующее, и широкое внедрение в науку ипдуктивного метода научного исследования, основывавшегося на точном наблюдении и опыте.

Глашатаем нового направления был философ-материалист Бэкон , идеи которого оказали большое влияние на развитие естествознания. В соответствии со взглядами Бэкона Гарвей утверждал, что «во всякой науке, какова бы она ни была, необходимы прилежные наблюдения и частые советы с чувством», и что «мы не должны полагаться на опыты других людей, но должны производить свои собственные, без которых никто не может сделаться исследователем ни в какой отрасли естествознания». На основе этих взглядов были созданы экспериментальные методы исследования физиологических Процессов, обусловившие новые паучные открытия.

Исследование структуры и функции человеческого тела, изучение анатомии и физиологии в эту эпоху, так же как н в последующее время, в значительной мере стимулировались потребностями практической медицины. В это время в Европе большое распространение получили заразные болезни, что было связано с развитием средств сообщения, с далекими путешествиями, предпринимавшимися для освоения новых рынков сырья и сбыта товаров, с передвижением населения иа большие расстояния п с ростом городов. Перед медициной встала задача разработать мероприятия, предупреждающие развитие эпидемий, а также найти способы лечения заболеваний, и это вызвало необходимость изучения как строения, так и функций человеческого тела.

Успехи анатомии предшествовали успехам физиологии, ибо понимание строения организма, структуры его органов является необходимой предпосылкой к изучению функции. Произведенные в XVI столетии исследования основоположника анатомии Везалия, а также Сервета, Коломбо, Фадлопня н других анатомов подготовили почву для физиологических открытий, в частности для открытия кровообращения. И в дальнейшем достижения физиологии, в особенности в первый период ее развития как науки (в XVII -XVIII столетиях), неотделимы от успехов анатомии. Так, например, открытие лимфатических сосудов дало возможность установить процесс лимфообращения; обнаружение Левенгуком и Мальпигнем капилляров доказало правильность-представлений о кровообращении и послужило основой для понимания роли крови в обмене веществ; изучение строения желез дало возможность исследовать их функции и т. д.

Огромное значение для развития физиологии имею открытие рефлекса французским философом Р. Декартом в первой половине XVII столетия.

Декарт полагал, что при воздействии раздражения на орган чувств натягиваются нервные нити, идущие к мозгу, и открывают расположенные на внутренней поверхности мозга отверстия, через которые выходят находящиеся в мозговых желудочках «животные духи». Последние, подобные частицам пламепн. проходят по нервам и втекают в мышцы, вызывая пх сокращение. Декарт считал, что некоторые реакции человека, например отдергивание ноги от огня, происходят соответственно описанному им механизму. Произвольные же движения человека зависят, по Декарту, от наличия в тело души, которая имеет свое местопребывание в верхнем мозговом придатке - эпифизе. Хотя взгляды Декарта па природу реакции организма в ответ на раздражения теперь кажутся наивными, однако нельзя не признать, что этим ученым XVIII столетия было дано описание рефлекторного акта и пути, по которому проходит нервный импульс при рефлексе. Что же касается самого термина «рефлекс», то он был введён в конце XVIII века чешским ученым Г. Прохаска.

В этот период развития физиологии в ней преобладало анатомическое направление. Однако некоторое значение для физиологии и тогда имели исследования, связанные с начинавшими развиваться физикой и химией: делались попытки внедрить в физиологию физические методы исследования и объяснить явления происходящие в организме, законами механики, физики и химии.

В науке XVII столетия создались два направления, получившие название иатрофизической и иатрохимической школ. Иатрофизики считали, что законы механики и физики могут дать исчерпывающее объяснение всем жизненным явлениям. Так, Д. А. Борелли, автор сочинения «О движении животных» утверждал, что «действия животных совершаются вследствие, посредством и на основании механических явлений» и что «основой всех жизненных процессов служат анатомия, физика и математика».

Из исследований XVII-XVIII столетий, связанных с механикой, физикой и химией, наибольшее значение для физиологии имели работы Д. А. Борелли, изучавшего механизм дыхательных движений и роль диафрагмы и применившего законы гидравлики к изучению движения крови в сосудах; С. Гелса, определившего кровяное давление; X. Р. Шейнера, рассматривавшего глаз с точки зрения оптики, изучившего лучепреломление глазных сред и установившего роль сетчатки в возникновении зрительных ощущений; Р. Реомюра и Л. Спалланцани, занимавшихся исследованием химизма пищеварения; А. Л. Лавуазье, заложившего иаучпые основы представлений о процессах дыхания и производившего вместе с П. С. Лапласом первые измерения энергетических затрат организма; А. Галлера, впервые подробно исследовавшего явления возбудимости и чувствительности; Л. Гальвани, открывшего биоэлектрические явления и положившего начало электрофизиологии. Исключительно важными для физиологии были оцененные позднее открытия и взгляды великого русского естествоиспытателя М. В. Ломоносова, намного опередившего воззрения своей эпохи. М. В. Ломоносов в 1748 г. сформулировал всеобщий закон природы-закон сохранения вещества и движения, который в XIX столетии лег в основу важнейших физиологических исследований обмена веществ и превращения энергии в организме. Ломоносов убежденно и убедительно доказывал значение физики и в особенности химии для физиологии. Он утверждал, что физиолог «должен давать из физики причины движения животного тела» и что «медик без довольного познания химии совершен быть не может».

В XVII-XVIII столетиях господствовал метафизический образ мышления: идея развития была чужда науке, и все явления природы рассматривались как постоянные и неизменные. Метафизичность науки нашла отражение в механистических представлениях, господствовавших в то время, и в идеалистических, виталистических концепциях, расцветших к концу XVIII века. Эти идеи наложили глубокий отпечаток на изучение физиологических проблем. Так, механицизм ярко проявился в трудах некоторых философов и физиологов, например Ламетри, утверждавших, что организм является машиной.

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

Физиология (греч. physiologia; от physis - природа и logos - учение) - одна из древнейших естественных наук. Она изучает жизнедеятельность целого организма, его частей, систем, органов и клеток в тесной взаимосвязи с окружающей природой. История физиологии включает в себя два периода: эмпирический и экспериментальный, который можно подразделить на два этапа - до Павлова и после него.

Физиология как самостоятельная наука, основанная на экспериментальном методе исследования, ведет свое начало от работ Уильяма Гарвея (Harvey, William, 1578-1657), который математически рассчитал и экспериментально обосновал теорию кровообращения. Он впервые высказал убеждение, что кровь в организме непрерывно обращается - циркулирует, и что центральной точкой кровообращения является сердце. Гарвей считал, что сердце - это мощный мышечный мешок, разделенный на несколько камер. Оно действует, как насос, нагнетающий кровь в сосуды (артерии).

Рене Декарт (1596 – 1650) выдвинул гипотезу, согласно которой есть две сущности: тело и душа. Душа состоит из мыслей. «Я мыслю, следовательно я существую». Также крупнейшим событием 17 века было открытие рефлекторного принципа в поведении организмов.

Сеченов. Его работы по физиологии дыхания и крови, газообмену, растворению газов в жидкостях и обмену энергии заложили основы будущей авиационной и космической физиологи. Особое значение имеют его труды в области физиологии центральной нервной системы и нервно-мышечной физиологии. И.М.Сеченов первым выдвинул идею о рефлекторной основе психической деятельности и убедительно доказал, что «все акты сознательной и бессознательной жизни по способу происхождения суть рефлексы». Открытая им центральная (сеченовское) торможение в 1863 году, впервые продемонстрировало, что на ряду с процессом возбуждения существует другой активный процесс – торможение, без которого немыслима интегративная деятельность ЦНС.

И. П. Павлов (1849-1936) – физиолог, психолог, создатель науки о высшей нервной деятельности и представлений о процессах регуляции пищеварения, основатель крупнейшей российской физиологической школы. Чрезвычайно расширил и развил рефлекторную теорию и на ее основе раскрыл нервный механизм, обеспечивающий наиболее совершенные и сложные формы реагирования человека и высших животных на воздействия внешней среды. Этим механизмом является условный рефлекс, а органом высшей нервной деятельности - кора больших полушарий головного мозга. И.П.Павлов ввел в практику физиологических исследований метод хронического эксперимента, благодаря которому стало возможным изучение целостного, практически здорового животного. Методологической основой его концепции явились три основных принципа: единство структуры и функции, детерминизм, анализ и синтез. Изучая поведение животных, И.П.Павлов выявил рефлексы нового типа, которые формируются и закрепляются при определенных условиях окружающей среды. Павлов назвал их условными, в отличие от уже известных прирожденных рефлексов, которые имеются от рождения у всех животных данного вида (из Павлов назвал безусловными). Было показано также, что условные рефлексы вырабатываются в коре больших полушарий головного мозга, что сделало возможным экспериментальное изучение деятельности коры больших полушарий в норме и патологии. Результатом этих исследований явилось создание учения о высшей нервной деятельности – одного из величайших достижений естествознания XX века. Выяснение закономерностей высшей нервной деятельности животных позволило вплотную подойти к раскрытию законов деятельности головного мозга человека. Результатом этого явилось учение о двух сигнальных системах, из которых вторая, присущая только человеку, связана с речью и абстрактным мышлением.

Анохин – советский физиолог, создатель теории функциональных систем. Предложил принципиально новые методы изучения условных рефлексов: секреторно-двигательный метод, а также метод с внезапной подменой безусловного подкрепления, позволивший Анохину прийти к заключению о формировании ЦНС специального аппарата, в котором заложены параметры будущего подкрепления. В 1935 г. Анохин вводит понятие « санкционирующая афферентация» (обратная связь), дает определения функциональной системе. В военные годы исследовал и хирургически лечил травмы нервной системы. Сформулировал теорию сна, бодрствования, биологическую теорию эмоция, предложил теорию голода и насыщения.

Первые сведения о деятельности разных органов и систем организма были получены врачами Греции и Рима - Гиппократом, Аристотелем, Галеном. Эти сведения основывались на данных о строении тела, полу­ченных при вскрытии трупов. Попытки изучения функций живого орга­низма впервые были предприняты в начале нашей эры Галеном.

Началом современной физиологии как экспериментальной науки счи­тают исследования, проведенные в начале XVII века английским врачом В.Гарвеем, Применив метод количественного изучения функций живого организма, он впервые описал движение крови по замкнутым сосудистым кругам. Был опубликован в 1628 году научный труд «Анатомические ис­следования движения сердца и крови у животных». Это первая работа по физиологии.

Большой вклад в понимание сущности реакций организма на раздра­жение внес в первой половине XVIII века физиологи и философ Р.Декарт. Он создал представления о путях, по которым проходит возбуждение в организме, обеспечивая ответные реакции на раздражения. Позднее на осно­ве этих представлений чешский физиолог И.Прохазка разработал учение о рефлексах, заложившее основы современной физиологии йервной систе­мы.

Физиологические исследования в России впервые были проведены в XVIII веке. Наибольшее значение среда них имеют исследования М.В.Ломоносова. Он сформулировал важнейший закон о сохранении ве­щества и энергии. Большой интерес представляют и его работы по физио­логии органов чувств. В частности, он создал представлении о механизме цветного зрения.

Позднее, в 60-е годы XIX века, в России наблюдался значительный подъем физиологической мысли. Среди физиологов этого времени следует выделить И.М.Сеченова, которого И.П.Павлов назвал отцом русской фи­зиологии. И.М.Сеченов впервые описал процессы торможения в централь­ной нервной системе. Особенно важное значение имеет разработанная им материалистическая теория психической деятельности человека. В своей работе «Рефлексы головного мозга» (1863 г.) он изложл свои взгляды на природу произвольных движений и психических явлений.

Огромное значение для развития физиологии имели работы И.П.Павлова и его учеников, И.П.Павлов используя методы хронических опытов создал физиологию целостного организма. На первом этапе своей деятельности И.П.Павлов выполнил ряд важнейших исследований по фи­зиологии кровообращения и пищеварения.

В 1904 году И.П.Павлову за ра­боты по физиологии пищеварения была присуждена Нобелевская премия.

Следующий этап своих исследований И.П.Павлов посвятил изучению ме­ханизмов деятельности мозга, им было создано учение о высшей нервной деятельности, которое является естественнонаучной основой материалис­тического понимания природы сознания как высшей функции мозга чело­века.

И.П.Павлов был учителем многих видных советских физиологов. Среди них следует назвать ЛА.Орбели - создателя эволюционной физио­логии, разработчика многих вопросов, связанных с двигательной деятель­ностью.

Учениками И.П.Павлова были также К.М.Быков - исследовал услов-норефлекторнуто регуляцию деятельности внутренних органов;

Г.В.Фольборт - внесший вклад в изучение пищеварительных процес­сов и вопросов утомления и восстановления;

П.С.Купалов - изучавший различные закономерности условнореф-лекторных реакций;

П.К.Анохин - выдвинувший концепцию о системной деятельности нервной системы.

Крупными представителями отечественной физиологии являются Н.Е.Введенский и А.А.Ухтомский . Н.Е. Введенский обнаружил в мыш­цах явления оптимума и пессимума, сформулировал понятие о лабильно­сти нервов и мышц, создал учение о парабиозе. Дальнейшее развитие идеи Н.Е.Введенского получили в лабораториях его ученика А.А.Ухтомского, открывшего закон доминанты в деятельности нервной системы.

Из современных советских физиологов следует назвать следующих ученых: Э.ААсратян, А.Б.Коган, П.Г.Костюк, М.Е.Маршак, М.В.Сергиевский, В.Н.Черниговский, А.М.Уголев, Н.Бехтерева и мн. др.

Лекция 2

«Нервно-мышечная физиология»

План:

1. Виды двигательных единиц.

2. Композиция мышц.

3. Сила мышцы и факторы, ее определяющие.

1 вопрос. Двигательные единицы

Основным морфо-функциональным элементов нервно-мышечного аппарата скелетных мышц является двигательная единица (ДЕ). Она включает мотонейрон спинного мозга с иннервируемыми его аксоном мышечными волокнами. Внутри мышцы этот аксон образует несколько концевых веточек. Каждая такая веточка образует контакт – нервно-мышечный синапс на отдельном мышечном волокне. Нервные импульсы, идущие от мотонейрона, вызывают сокращения определенной группы мышечных волокон. Двигательные единицы мелких мышц, осуществляющих тонкие движения (мышцы глаза, кисти), содержат небольшое количество мышечных волокон. В крупных мышцах их в сотни раз больше.

Мышечные волокна в составе разных мышц обладают разной силой, скоростью и длительностью сокращения, а также утомляемостью. Ферменты в них обладают разной активностью и представлены в различных изомерных формах. Заметно различие в них содержания дыхательных ферментов – гликолитических и окислительных. По соотношению миофибрилл, митохондрий и миоглобина различают белые, красные и промежуточные волокна . По функциональным особенностям мышечные волокна подразделяют на быстрые, медленные и промежуточные . Если по активности АТФазы мышечные волокна различаются довольно резко, то степень активности дыхательных ферментов варьирует весьма значительно, поэтому наряду с белыми и красными существуют и промежуточные волокна. В мышечной ткани разные волокна часто расположены мозаично. Наиболее заметно мышечные волокна различаются особенностями молекулярной организации миозина. Среди различных его изоформ существуют две основных – «быстрая» и «медленная». При постановке гистохимических реакций их различают по АТФазной активности. С этими свойствами коррелирует и активность дыхательных ферментов. Обычно в быстрых волокнах преобладают гликолитические процессы, они более богаты гликогеном, в них меньше миоглобина, поэтому их называют также белыми. В медленных волокнах, напротив, выше активность окислительных ферментов, они богаче миоглобином, выглядят более красными.

Все ДЕ в зависимости от функциональных особенностей делятся на 3 группы:

I. Медленные неутомляемые . Они образованы "красными" мышечными волокнами, в которых меньше миофибрилл. Скорость сокращения и сила этих волокон относительно небольшие, но они мало утомляемы. Поэтому их относят к тоническим. Регуляция сокращений таких, волокон осуществляется небольшим количеством мотонейронов, аксоны которых имеют мало концевых веточек. Пример – камбаловидная мышца.

II В. Быстрые, легко утомляемые . Мышечные волокна содержат много миофибрилл и называются "белыми". Быстро сокращаются и развивают большую силу, но быстро утомляются. Поэтому их называют фазными . Мотонейроны этих ДЕ самые крупные, имеют толстый аксон с многочисленными концевыми веточками. Они генерируют нервные импульсы большой частоты. Напр., мышцы глаза.

II А. Быстрые, устойчивые к утомлению (промежуточные).

Каждая мышца состоит из волокон, обозначаемых как S (ST) волокна (slow twitch fibres) - медленно сокращающиеся и FF-волокна - быстро сокращающиеся (fast twitch fibres). S-волокна, обладающие высоким содержанием миоглобина (красный мышечный пигмент), называют также красными волокнами. Они включаются при нагрузках в пределах 20-25% от максимальной силы и отличаются хорошей выносливостью. FT-волокна, обладающие по сравнению с красными волокнами небольшим содержанием миоглобина, называют также белыми волокнами. Они характеризуются высокой сократительной скоростью и возможностью развивать большую силу. По сравнению с медленными волокнами они могут вдвое быстрее сокращаться и развить в 10 раз большую силу. FT-волокна, в свою очередь, подразделяются на FTO-и FTG-волокна: наименование их определяется способом получения энергии. Получение энергии в FTO-волокнах происходит так же, как и в ST-волокнах, преимущественно путем окисления, в результате чего глюкоза и жиры в присутствии кислорода разлагаются на двуокись углерода (СО2 и воду (Н20). В связи с тем, что этот процесс разложения протекает относительно экономично (на каждую молекулу глюкозы при разложении мышечного гликогена для получения энергии накапливается 39 энергетических фосфатных соединений), FTO-волокна имеют также относительно высокую сопротивляемость утомляемости. Накопление энергии в FTG-волокнах происходит преимущественно путем гликолиза, т. е. глюкоза в отсутствии кислорода распадается до еще относительно богатого энергией лактата. В связи с тем, что этот процесс распада неэкономичен (на каждую молекулу глюкозы для получения энергии накапливается всего лишь 3 энергетических фосфатных соединения), FTG-волокна относительно быстро утомляются, но тем не менее они способны развить большую силу и, как правило, включаются при субмаксимальных и максимальных мышечных сокращениях

Таблица. Упрощенное изображение спектра мышечных волокон

Характеристика (функция) Тип волокна
FT-волокна FTG-волокна FTO-волокна ST-волокна
Физиологическая характеристика:
- скорость сокращения быстрая быстрая медленная
- сила сокращения очень высокая высокая незначительная
- реакционная способность. быстрая быстрая медленная
- аэробная выносливость плохая хорошая очень хорошая
Биохимическая характеристика:
- накопление энергии гликогенное гликогенное/ окислительное окислительное
- отложения фосфата +++ ++ +
- отложения гликогена +++ ++(+) ++
- жировые отложения + +(+) ++(+)
- содержание митохондрий + ++ +++
- капилляризация + ++ +++
Функция: нагрузки в субмаксимальной зоне, проявление максимальной и скоростной силы выносливость и силовая выносливость, статическая работа на опору и удержание
+++ - значительные, ++ - средние, + - незначительные

2 вопрос. Композиция мышц.

Состав мышц может очень различаться по количеству двигательных единиц, а двигательные единицы в свою очередь могут состоять из самого различного количества мышечных волокон. Все мышечные волокна одной двигательной единицы относятся к одному и тому же типу волокон (FT- или ST-волокна). Мышцы, в функцию которых входит выполнение очень тонких и точных движений (например, мышцы глаз или пальцев руки), обладают обычно большим количеством двигательных единиц (от 1500 до 3000); в их состав входит небольшое количество мышечных волокон (от 8 до 50). Мышцы, выполняющие относительно грубые движения (например, большие мышцы конечностей), обладают, как правило, значительно меньшим количеством двигательных единиц, но с большим числом волокон на каждую (от 600 до 2000). Так, например, бицепс может содержать в своем составе более миллиона волокон. Эти мышечные волокна вместе со своими нервными окончаниями образуют более чем 600 двигательные единиц, так что одна двигательная клетка переднего рога спинного мозга иннервирует своими отростками около 1500 мышечных волокон. В большеберцовой мышце около 1600 и в мышцах спины до 2000 мышечных волокон иннервируются одной клеткой переднего рога, образуя таким способом в каждом случае двигательную единицу. Однако количество волокон в двигательных единицах какой-либо мышцы не одинаково, например, в бицепсе может быть 1000, 1200, 1400 или 1600 волокон.

Принадлежность мышечных волокон к определенной двигательной единице задается от природы и не может быть изменена тренировкой. Двигательные единицы активизируются по закону „все или ничего". Таким образом, если от тела двигательной клетки переднего рога спинного мозга посылается по нервным путям импульс, то на него реагируют или все мышечные волокна двигательной единицы, или ни одного. Для бицепса это означает следующее: при нервном импульсе необходимой силы укорачиваются все сократительные элементы (миофибриллы) всех (примерно 1500) мышечных волокон соответствующей двигательной единицы.

Каждый человек обладает индивидуальным набором S-и FF-волокон, количество которых, как показывают исследования, нельзя изменить при помощи специальной тренировки. В среднем человек имеет примерно 40% медленных и 60 % быстрых волокон. Но это средняя величина (по всей скелетной мускулатуре), мышцы же выполняют различные функции и поэтому могут значительно отличаться друг от друга составом волокон. Так, например, мышцы, выполняющие большую статическую работу (камбаловидная мышца), часто обладают большим количеством медленных ST-волокон, а мышцы, совершающие преимущественно динамические движения (бицепс), имеют большое количество FТ-волокон. Однако как показывают многочисленные исследования, встречаются и значительные индивидуальные отклонения. У бегунов на длинные дистанции в икроножной мышце и пловцов-стайеров в дельтовидной мышце было обнаружено. 90% медленных волокон, а у спринтеров в икроножной мышце до 90% быстрых волокон. Эти индивидуальные поразительные величины распределения волокон, вероятно, нельзя объяснить тренировкой, - они обусловлены генетически. Это подтверждается, в частности, тем, что, несмотря на гармоничное развитие скоростной силы рук и ног, боксер или фехтовальщик может, например, иметь чрезвычайно „быстрые ноги" и „медленные руки". Прирожденное количество быстрых FF-волокон является, видимо, причиной этого несоответствия. Тот факт, что у хороших представителей видов спорта, где особенно требуется выносливость (марафонцы, велосипедисты-шоссейники и т. и.), в основном преобладают медленные S-волокна, а высококлассные атлеты, которые демонстрируют скоростную силу (спринтеры, копьеметатели, толкатели ядра), обладают высоким процентом быстрых FF-волокон, свидетельствует об особом предрасположении именно к этим видам спорта. На первый взгляд кажется, что это положение спорно, так как у тяжелоатлетов - победителей различных соревнований - обнаружено чрезвычайно уравновешенное соотношение FF-и S-волокон. Однако следует учитывать специфическую работу тяжелоатлета: опору и удержание, которая в значительной степени выполняется посредством S-волокон.

Соответствующей силовой тренировкой можно относительно быстро преобразовывать FF-волокна в FR-волокна. Это дает возможность достигать хорошей выносливости даже тем спортсменам, которые, имея много быстрых FF-волокон, казалось бы более подходят для проявления максимальной и скоростной силы. Несмотря на то, что тренировкой нельзя изменить унаследованное соотношение между S- и FF-волокнами, свойства волокон, хоть и в определенных пределах, все же приспосабливаются к предъявляемым специфическим раздражениям (поперечное сечение, время сокращения, оснащение энергоносителями и митохондриями и т. д.).

Вопрос.

Сила двигательной единицы зависит, в частности, и от количества ее мышечных волокон. Двигательные единицы с небольшим количеством волокон при единичном сокращении развивают силу тяги всего лишь в несколько миллиньютонов. Двигательные единицы с большим количеством волокон - несколько ньютонов. Силовой потенциал отдельной двигательной единицы относительно небольшой, поэтому для выполнения движения одновременно „подключается" несколько двигательные единиц. Чем выше преодолеваемое сопротивление, тем больше двигательных единиц должно выполнять движение.

Каждая двигательная единица имеет свой индивидуальный порог возбуждения, который может быть низким или высоким. Если импульсный залп (раздражение нерва, вызывающее сокращение мышцы) слаб, то тогда активизируются лишь двигательные единицы, обладающие низким порогом возбуждения. Если импульсный залп усиливается, начинают реагировать дополнительные двигательные единицы с более высоким порогом возбуждения. С увеличением сопротивления активизируется все больше двигательных единиц. Быстрота индивидуальных порогов возбуждения зависит главным образом от состояния двигательных единиц. Для продолжения деятельности двигательных единиц, которые утомляются от: а) накопления кислых продуктов обмена веществ (лактат, СО2); б) истощения энергоносителей (энергетические фосфаты, гликоген и т.п.); в) нервного перевозбуждения (в двигательной единице или в коре головного мозга), требуется все больше и больше волевых усилий.

Внутримышечная координация и частота импульсов

Постоянное изменение количества участвующих в движении двигательных единиц (пространственная суммация) и изменение частоты нервных импульсов (временная суммация) регулируется очень тонкой градацией сократительной силы мышцы.

Пространственная суммация . Для выполнения движения может быть задействовано различное количество двигательных единиц благодаря механизму ступенчатого развития силы. Однако этот механизм, обусловленный дифференцированным строением мышц, очень неоднороден. Количество ступеней определяется количеством двигательных единиц, из которых состоит мышца; размер ступеней зависит, в частности, от количества, поперечника и строения мышечных волокон, которыми располагает соответствующая двигательная единица. Например, в состав мышц пальцев кисти входит чрезвычайно много двигательных единиц с небольшим количеством волокон (многочисленные маленькие ступени), поэтому сила, с которой они выполняют движения, может быть „градуирована" при помощи пространственной суммации гораздо тоньше, чем сила бицепса, обладающего относительно малым количеством двигательных единиц и большим числом волокон (немногочисленные большие ступени).

Временная суммация. Если двигательная единица активизируется лишь путем искусственного раздражения, например, электрической стимуляцией, то все ее мышечные волокна укорачиваются, а затем снова расслабляются.

Однако в здоровом организме в естественных условиях произвольные одиночные импульсы или сокращения не возникают. Сокращение мышцы всегда обуславливается действием серии импульсов в секунду. Если второй сократительный импульс подаётся еще до окончания фазы расслабления волокон, то в этом случае второе сокращение наслоится на первое. Следствие этого - более высокое развитие силы. Если нужно развить большую силу, то второй импульс уже должен достичь волокон двигательной единицы незадолго до окончания фазы сокращения. Тогда волокна снова сократятся еще до начала фазы расслабления; спад напряжения или силы в этом случае невозможен. Последующие сокращения вытекают из предыдущих. Когда, наконец, многочисленные нервные импульсы начинают следовать друг за другом достаточно быстро, отдельные сокращения полностью перекрываются. Таким способом, в отличие от одиночного сокращения, достигаются гораздо более сильные сокращения мышечных волокон, что приводит к 3-4-х кратному увеличению силы. Это явление называется титаническим сокращением. Необходимая для полного тетанического сокращения частота импульсов определяется соответствующим типом волокна двигательной единицы. В связи с тем, что быстрые FT-волокна, по сравнению с медленными ST-волокнами, гораздо быстрее сокращаются и расслабляются, импульсы также должны в более короткие промежутки попадать в волокна для того, чтобы можно было помешать их расслаблению и тем самым развить большую силу.

Поэтому у быстрых двигательных единиц импульсы низкой частоты (7-10 за с) вызывают лишь незначительное напряжение и такую же силу, импульсы средней частоты (25-30 за с) соответственно умеренное напряжение и силу, импульсы высокой частоты (от 45 за с и выше) - максимальное напряжение и максимальную силу. Для медленных двигательных единиц, состоящих из S-волокон, уже 20 импульсов в секунду может быть достаточно для исчерпания их силового потенциала. Лишь при одном, самом благоприятном для соответствующей двигательной единицы, временном промежутке между импульсами можно добиться оптимального эффекта временной суммации. Более высокая частота импульсов для данной двигательной единицы не может вызвать более сильного сокращения и, следовательно, увеличения силы. Продолжительность титанического сокращения может превышать продолжительность одиночного сокращения в десятки и тысячи раз. Мышца, состоящая большей частью из S-волокон, более устойчивых к воздействию утомляемости, может поддерживать титаническое сокращение обычно значительно дольше, чем мышца, в составе которой содержатся преимущественно быстро утомляющиеся FF-волокна. В упрощенном изложении „кооперирование" пространственной и временной суммации происходит следующим образом: небольшие силовые потребности удовлетворяются медленными, состоящими из ST-волокон двигательными единицами, обладающими низким порогом возбуждения. При увеличении силовых потребностей включаются двигательные единицы, имеющие более высокий порог возбуждения (пространственная суммация). Одновременно за счет повышения частоты импульсов увеличивается силовая отдача уже работающих низкопороговых единиц (временная суммация). При дальнейшем увеличении силовых потребностей в работу постепенно будет включаться все больше и больше быстрых двигательных единиц, которые могут „стартовать" с более высоких частот и вовлекать в активное состояние больший диапазон частот. Для преодоления максимальных сопротивлений подготовленные в силовом отношении спортсмены включают около 85% своих двигательных единиц с оптимальными импульсными частотами. В связи с тем, что „медленные" единицы имеют меньше мышечных волокон и по этой причине развивают меньше силы, чем „быстрые" единицы, часто уже при усилии в 25% мобилизуется около 50% имеющихся в распоряжении единиц. Участие относительно большого количества малых двигательных единиц в незначительной силовой работе позволяет проводить более тонкую регуляцию мышечной деятельности, чем при высоких силовых нагрузках. Процессы временной суммации (частота импульсов) согласно результатам последних исследований условно поддаются тренировке, пусть даже эта тренировка проводится в очень сложных общих взаимосвязях. Тренированная двигательная единица может быстрее укорачиваться, обрабатывать" более высокие импульсные частоты и развивать большую силу.

Когда скоростная сила, которая реализуется главным образом быстрыми FT-волокнами, противодействует умеренным и высоким сопротивлениям, происходит активизация большого количества двигательных единиц с короткойсерией импульсов. Эта, так называемая,стартовая иннервация вызывает нарастающий и сильный процесс сокращения. За взрывным началом сокращения следует сигнальная блокировка (биоэлектрическое молчание), во время которой двигательные единицы сокращаются с высокой скоростью. Такие скоростно-силовые движения называются также баллистическими движениями. Они заранее программируются в головном мозге и осуществляются с такой высокой скоростью, что во время их выполнения обратная связь не срабатывает, в результате чего движение невозможно исправить в ходе его выполнения. Продолжительность биоэлектрического молчания, следующего за стартовой иннервацией, зависит главным образом от величины преодолеваемого сопротивления. Если сопротивление настолько велико, что ускорения при свободном сокращении больше не происходит, то следует новая серия импульсов, сопровождаемая биоэлектрическим молчанием, благодаря которой обеспечивается дальнейшее ускорение. Если же сопротивление настолько велико, что серия импульсов и последующая сигнальная блокировка не появляются, то сопротивление будет преодолеваться импульсами очень высокой частоты. Движения, которые характеризуются короткой серией (сериями) импульсов с последующей сигнальной блокировкой и баллистическим сокращением, имеют резко выраженный скоростно-силовой характер. Движения, характеризуемые рядом импульсов очень высокой частоты, имеют характер максимальной силы.

Когда скелетная мышца работает на силовую выносливость и преодолевает легкие или умеренные сопротивления, при которых частота импульсов не достигает максимума, деятельность двигательных единиц осуществляется попеременно (асинхронная деятельность). Это означает, что в соответствии с требуемым усилием активизируется лишь определенная часть двигательных единиц и таким образом происходит движение. Другая часть двигательных единиц находится в неактивном состоянии и укорачивается пассивно. При возрастании утомляемости двигательные единицы, бывшие до сего времени активными, выключаются, а вместо них начинают активно работать другие, неактивные до сих пор, двигательные единицы. В обычных условиях человек, выполняя статическую или динамическую работу преодолевающего характера, не может одновременно включать в движение все двигательные единицы мышцы. Высокотренированные атлеты тех видов спорта, в которых сила является основным компонентом результативности (тяжелая атлетика, борьба, легкоатлетические метания), для выполнения движения способны активно и одновременно подключать до 85% своих мышечных волокон и тем самым развивать большую силу. Нетренированные лица могут обычно активизировать лишь до 60%. Умение управлять двигательными единицами синхронно называетсявнутримышечной (интрамышечной) координацией. Ее уровень можно считать высоким, если спортсмен, с одной стороны, обладает ярко выраженной способностью дифференцировать силу и, с другой стороны, может одновременно активизировать высокий процент двигательных единиц. Под воздействием гипноза или при электрической стимуляции (100 гц и выше) нетренированный человек может одновременно задействовать значительно больше двигательных единиц и тем самым увеличить свою силу почти на 35%. Тренированный человек при независящих от усилия воли условиях может увеличить свой силовой потенциал лишь на 10%. Разница между произвольно мобилизованной максимальной силой и непроизвольно активизированной силой называетсядефицитом силы. В тренировочной практике дефицит силы определяется чаще всего разницей в силе, развиваемой в статическом и динамически-уступающем режимах. Такое определение возможно потому, что сила, развиваемая при принудительном растягивании мышц (динамическая работа уступающего характера) обычно на 10-35% превышает силу, которая может быть мобилизована при статическом режиме работы. Таким образом, в показателях силы, достигаемых, с одной стороны, электрической стимуляцией мышц в статическом режиме и, с другой стороны, принудительным растягиванием мышц в динамическом режиме, имеется полное соответствие. При уступающем режиме работы независимо от воли подключаются дополнительные двигательные единицы, т.е. в этих условиях величина силы практически не зависит от уровня внутримышечной координации. При этом необходимо иметь в виду, что вызванную силу и произвольную можно сопоставлять друг с другом лишь тогда, когда они прикладываются в сопоставимых условиях (например, при одном и том же угле в суставах).

Экспериментально удалось доказать, что величина развития силы при принудительном растягивании мышц увеличивается вместе с увеличением скорости, в то время как при преодолевающем режиме работы она при увеличении скорости снижается.

Процесс взаимодействия различных типов волокон до настоящего времени выяснен не до конца. Схематично он может быть изложен так. При нагрузках менее 25% от максимальной силы сначала начинают функционировать преимущественно медленные волокна. Как только их запасы энергии иссякают, „подключаются" быстрые волокна. После того, как израсходуются энергетические запасы быстрых волокон, работу придется прекратить, наступает истощение. Если же силовая нагрузка возрастает от низких до максимальных величин, то согласно Костиллу (1980 г.) возникает так называемый „эффект рампы", когда почти все волокна вовлекаются в движение. Принцип участия различных типов волокон в мышечной деятельности действителен, по всей вероятности. для всех движений. Сначала включаются медленные волокна, а чуть позже, когда потребность в силе превысит 25% от максимальной, в активность вступают и быстрые волокна. При взрывных движениях временной промежуток между началом сокращения медленных и быстрых волокон минимален (всего несколько мс). Таким образом, начало сокращении у обоих типов волокон происходит почти одновременно, однако быстрые волокна укорачиваются значительно быстрее и раньше достигают своего силового максимума (приблизительно за 40-90 мс), чем медленные волокна (приблизительно за 90-140 мс), поэтому за взрывную силу, которая должна быть реализована в течение 50-120 мс, „отвечают" главным образом быстрые волокна. Скорость сокращения быстрых и, хотя в значительно меньшей степени, медленных волокон можно повысить тренировкой по специальным методам развития максимальной и скоростной силы. Упражнения на многократное взрывное преодоление субмаксимальных сопротивлений могут помочь, например, уменьшить время сокращения (от начала сокращения до достижения силового максимума) быстрых волокон приблизительно до 30 мс и медленных волокон примерно до 80 мс. Наименование „быстрое волокно" или „медленное волокно" вовсе не означает, как иногда ошибочно истолковывают, что относительно быстрые движения реализуются исключительно быстрыми волокнами, а медленные движения лишь медленными волокнами. Для включения волокон в работу решающее значение имеет мобилизуемая сила, т. е. величина, требуемая для передвижения массы (веса), а также величина ускорения этой массы. В соответствии с имеющейся на сегодняшний день информацией и большое ускорение незначительного веса (большая скорость движения), и незначительное ускорение большого веса (медленная скорость движения) осуществляется за счет интенсивного участия быстрых мышечных волокон. Взрывные силы, направленные на преодоление неподвижных сопротивлений (статический режим работы, скорость движения = 0 м/с), также вызываются прежде всего быстрыми волокнами.

Лекция 3

«Сократительная деятельность

скелетных мышц»

План:

1. Теории мышечного сокращения.

2. Одиночное и тетаническое сокращение.

3. Теории тетануса.

4. Формы и типы мышечного сокращения.

Физиология как наука уходит своими корнями в глубокую древность.

Первоначальные сведения о функциях организма были сформулированы в 4-2 веке до н.э. Гиппократом (Древняя Греция, 460-377 г.г. до н.э.), Аристотелем (Греция 384-322 г.г. до н.э.) и во втором веке нашей эры – Галеном (Древний Рим 171-200 г.). Немало сведений о организме имеются в труде выдающегося ученого средневековья Ибн-Сина-Авиценна (Ср. Азия) «Канон врачебной науки (XI век). Современная физиология датируется от работ английского врача анатома и физиолога Вильяма Гарвея. В известном его труде, опубликованном в 1628 г. под названием «Анатомическое исследование о движении сердца и крови у животных», дано правильное представление о большом и малом кругах кровообращения и о сердце как двигателе крови в организме.

После смерти Гарвея итальянский ученый Мальпиги открыл капилляры, тем самым дополнил открытие Гарвея.

Физиология того времени развивалась главным образом на основе анатомических исследований. Функции отдельных органов толковались в основном с позиций физики и химии, явления рассматривались изолированно одно от другого, в покое, а не в движении. Такой подход нередко приводил к ошибочным выводам. Например, считалось, что мозг «переваривает» ощущение и органически выделяет мысль, как печень желчь.

Подробные представления получили название механического, или вульгарного материализма.

Недостаток экспериментальных данных о сущности жизненных явлений способствовало распространению идеалистического направления в биологии – витализма, утверждавшего неопознаваемость возникновения жизни, ощущений и сознания и допускавшего существование нематериальных факторов («жизненной силы», или «энтелехийй») для объяснения своеобразия жизненных процессов.

Удар по метафизическим и идеалистическим представлениям в биологии был нанесен в ХYIII-XIX веках, чему способствовали такие открытия, как синтез органических веществ из элементов неживой природы, установление закона превращения веществ и энергии, открытие клеточного строения организмов. Эти открытия утвердили идею всеобщей связи и развития явлений и явились естественно-научной основой диалектико-материалистического взгляда на природу. Значительное развитие физиология получила в XIX веке.

Выдающимися учеными XIX века были в Германии – Мюллер, Гемьмгольц, Дюбуа-Реймон, Гейденгайн, во Франции – Мажанди, Бернар, в Англии - Белл, в США – Кеннон. Ими были изучены функции дыхания, кровообращения, пищеварения, обмена веществ, роль нервной системы.

Отличительной чертой для русских физиологов было последовательное отстаивание материалистических взглядов. Отцом Руссой физиологии по праву считают И.М. Сеченова.

Он изучал физиологию дыхания, мышечную деятельность, утомление, ЦНС. Им открыты явление суммации раздражений и феномен центрального торможения; им признана важная роль среды в жизнедеятельности организма. В своей работе «Рефлексы головного мозга» (1863) ученый впервые попытался объяснить психические процессы с позиции физиолога-материалиста.

«Старейшиной физиологов мира» называют гениального русского физиолога И.П. Павлова, создателя материалистического учения о высшей нервной деятельности. Его основные исследования посвящены также физиологии кровообращения и пищеварения.

Вслед за И.М. Сеченовым И.П. Павлов четко определил основные принципы материалистической физиологии: единство организма и среды, целостность организма, ведущая роль нервной системы в интеграции физиологических функций (принцип «нервизма»). Всемирную известность получили труды Павлова: «Лекции о работе главных пищеварительных желез» (1897), «Двадцатилетний опыт объективного изучения высшей нервной деятельности животных» (1923), «Лекции о работе больших полушарий головного мозга» (1927).

И.П. Павлов (1849-1936) – работал в военно-медицинской академии, проходил стажировку в Германии у Гейденгайна. С 1896 г.- зав. кафедрой физиологии Военно-медицинской академии и до 1924 г. одновременно заведовал физиологической лабораторией экспериментальной ветеринарной медицины. С 1924 г. до конца жизни руководил Институтом физиологии АН СССР.

Для Павлова по его планам была реорганизована Биологическая станция в с. Колтуши (ныне с. Павлово) под Ленинградом, ставшая, по выражению Павлова столицей условных рефлексов.

За исследования в области пищеварения Павлов был удостоен в 1904 г. Нобелевской премии.

В 1935 г. на 15 международном конгрессе физиологов (Ленинград-Москва) Павлов был признан не только по возрасту, но и по авторитету старейшиной физиологом мира.

Идеи ученого получили дальнейшее развитие в трудах его учеников и последователей Л.А. Орбели, П.К. Анохина и др.

Разработанные И.П. Павловым принципы и методы исследования позволили заложить прочный фундамент для развития физиологии сельскохозяйственных животных в России.

Под его руководством впервые были проведены исследования на жвачных животных с хроническими фистулами слюнных желез и изолированными участками сычуга, а также работы по иннервации молочной железы. Большой вклад в становление и развитие физиологии сельскохозяйственных животных внесли профессора А.В. Леонтович, К.Р. Викторов, Н.Ф. Попов(1886-1974), Г.И. Азимов (1801-1978), А.А. Кудрявцев (1903-1970), А.Д. Синещеков (1966-1971), Д.Я. Криницин (1904-1985).

Академик АН УССР Леонтович выполнил оригинальные исследования по физиологии пищеварения у птиц, изучил иннервацию внутренних органов и эндокринных желез.

Академик ВАСХНИЛ Н.Ф. Попов выполнил исследования в области физиологии ЦНС, ВНД, физиологии пищеварения.

Профессор Г.И. Азимов выполнил исследования в области эндокринологии, ВНД, лактации животных. Является автором ряда практических рекомендаций по раздою коров, подготовке вымени к доению.

Академик ВАСХНИЛ А.Д. Синещеков разработал методику внешних апастомозов и изучил особенности переваривания корма в разных отделах пищеварительного тракта жвачных и свиней.

Профессор А.А. Кудрявцев проводил работы в области физиологии пищеварения, гематологии, ВНД и анализаторов.

Академик ВАСХНИЛ Виктор Константинович Милованов и профессор Ирина Ивановна Соколовская (ВИЖ) со своими учениками провели научную работу по физиологии размножения сельскохозяйственных животных. Ими многое сделано для разработки методов искусственного осеменения животных.

Понравилась статья? Поделиться с друзьями: